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Simple fluids near rigid solids : statistical mechanics of density 
and contact angle 

M V Berry 
H H Wills Physin Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 lTL, UK 

Received 13 June 1973 

Abstract. By making a simple approximation for the two-particle distribution function in a 
fluid, an approximate formula is obtained for the fluid density n(r) throughout the liquid- 
vapour region near an arbitrary rigid solid which exerts forces on the fluid. The density 
formula is based on a ‘surface of tension’ Z which curves in from infinity towards the solid. 
For a ‘flat smooth solid’, we show that only one asymptotic slope results in a surface I: 
corresponding to stable contact with the solid. This gives simple formulae for the angle of 
contact and the work of adhesion, in terms of intermolecular potentials and the bulk liquid 
radial distribution function. Solids which are not flat or smooth are discussed. The effects 
of large and rapidly-varying curvatures of Z are estimated, leading to the result that our 
formulae should become more accurate as the contact angle increases. 

1. Introduction 

The deportment of liquid-vapour interfaces near the surfaces of solids affects many 
technological and biological processes (Bikerman 1958), and its understanding is one 
of the main problems of surface science. The central concept is the angle of contact, 8, 
which describes the degree to  which the liquid wets the solid, and also determines the 
shape of droplets on the surface; 8 is a macroscopic quantity, determined by the micro- 
scopic interactions between fluid and solid molecules. In this paper we derive an approxi- 
mate expression for the number density n(r) of the molecules of the inhomogeneous fluid ; 
if the solid surface is assumed microscopically flat, a formula for 8 appears naturally, as 
the condition for stability of the surfaces of constant density. 

Our treatment is based on an approximation for the correlations between fluid 
particles : we assume that n2(r1, r 2 ) ,  the two-particle distribution function between 
positions r l  and r2 in the fluid, may be written as 

where g ( R )  is the bulk liquid radial distribution function, and R denotes lr2-r11. This 
approximation, which was originally suggested by Green (1960), has been employed 
by Berry and Reznek (1971) to obtain a relation between the liquid density nL and the 
vapour density n,,  and by Berry et al (1972) to study surface tension. Equation (1) is 
qualitatively correct, but has one obvious defect : it neglects the anisotropy ofcorrelations 
in the liquid-vapour interface (in addition, the radial distribution function in the vapour 
is set equal to that of the liquid, but this will not lead to serious error except near the 
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critic’al temperature). More sophisticated discussions of the liquid-vapour interface 
have been published (Jouanin 1968, Toxvaerd 1971,1972), but these methods cannot be 
applied easily to the more complicated situation resulting from the presence of a solid, 
whereas (1) can still be used, as we shall see. (This extension of (1) to curved surfaces can 
ultimately only be justified by experiment.) 

We assume that thefluid is simple, that its molecules interact pairwise via a spherically 
symmetrical potential $(R), which has the usual form (Egelstaff 1967), of a short range 
repulsive core and a long range part which is attractive for a non-metallic liquid and 
oscillatory for a liquid metal (March 1968). The effect of the solid is to produce an 
‘external field’ $(r) which is the potential energy of a fluid molecule at r, due to its inter- 
action with the solid. If the solid consists of molecules at ri,  which interact separately 
with the fluid molecules via pair potentials Ui (which may not be spherically symmetric), 
then we may write $(r) in the form 

$(r) = 1 Ui(r - r i ) .  
i 

A useful expression for $(r) can be obtained if the solid is composed of identical molecules 
with spherical potentials U(R),  if the centres of the solid surface molecules lie in the (flat) 
xy  plane, if the effects of structure in the xy  plane are averaged out, and if the solid 
molecules have number density n,. Then $(r) depends only on z ,  and is given by 

$(z) = n , s s S  dr’ U(lr-r’l) = 2nn, dRR(R-z)U(R), (3) 
Z ’ < O  

after transforming to polar coordinates ; $(z) is similar to U ( R )  in its general form. This 
is the ‘flat smooth solid’ approximation. However, we emphasize that $(r) will be 
arbitrary for most of our treatment, so that the solid surface can have any degree of 
roughness from the molecular to the macroscopic, and may be composed of non- 
identical asymmetric molecules. 

Like most previous workers we assume that the solid surface is rigid, that is, $(r) 
does not depend on the fluid density n(r). This assumption has been challenged by Lester 
(1967) who gives a careful analysis of possible deformation of the solid in the region of 
three-phase contact. 

In several ways this paper is complementary to the work of Girifalco and Good 
(1957) (see also Good et  al 1958, Good and Girifalco 1960, Good 1964). While we 
consider the potentials $(R) and $(r) as given functions, they show that the attractive 
forces between fluid molecules, and the attractive forces between fluid and solid molecules, 
satisfy an approximate relation, and this enables them to correlate an impressive variety 
of experimental results, including the measurements of Zisman (1964) of 8 for a wide 
range of liquids and solids. On the other hand, Girifalco and Good neglect all position 
correlations between fluid molecules, whereas we include exactly at least the bulk 
liquid correlations embodied in the function g(R). Further, they assume that n(r) drops 
discontinuously from nL to n, , whereas we derive an approximation for the continuous 
variation of n(r) throughout the fluid. Finally, Girifalco and Good start from statistical- 
mechanical expressions for liquid-vapour surface energies and the solid-liquid work of 
wetting, whereas we employ the alternative ‘mechanical’ procedure (Ono and Kondo 
1960) to understand how the forces  which act on the fluid cause the liquid-vapour 
interface to recede from the solid with the angle 8. 
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2. Formalism for fluid density 

Our starting point is an exact equation, which can be derived from statistical mechanics, 
expressing the balance of forces on a volume element of an inhomogeneous fluid in an 
external potential $(r), at temperature T :  

kTVn(r) +n(r)V$(r)+ dr’n2(r, r‘)V,.$(Ir -r‘l) = 0. (4) 

The first term represents the rate ofnet momentum transport into the element, the second 
term is the external force on the element from the solid, and the last term is the force on 
the element from the rest of the fluid. Equation (4) is the first in the ‘BBGKY hierarchy’ 
of equations (Hill 1956), for the molecular density distribution functions of increasing 
order. 

As an elementary example of the use of equation (4), let n(r) be so small that the 
effect ofthe interparticle fluid forces V 4  can be neglected ;this would apply to the vapour- 
solid interaction far from the liquid region. Then (4) reduces to the Navier-Stokes 
equation for an ‘atmosphere’ of ideal gas, and the solution is simply the ‘Boltzmann’ 
expression 

n(r) = n, exp( - $(r) /kT) .  ( 5 )  

This has been used by Barker and Everett (1962) to describe vapour adsorption, in the 
case where $ depends only on z (cf (3)). 

In the general case, when forces within the fluid cannot be neglected, we employ 
in (4) the basic approximation (1) for n,; this gives 

V(kT In n(r) + $(r)) + I(r) = 0, (6) 
where 

Z(r) = fSf dr’n(r’)g(lr - r‘l)V,$(lr -r’l). (7) 

The essential step is to express the vector function Z(r) as a gradient. We introduce the 
interparticle vector R 3 r ‘ - r ,  and denote differentiation of functions with respect to 
their arguments by primes, to obtain 

R 
Z(r) = - /J[ dR Rn(R +r)g(R)@(R). 

Now we define a function S(R), which we shall employ frequently later : 

S(R) = - dp g(p)$’(p). JRm 
(When R is large, g(R) is almost unity, and S(R)  = $(I?).) Equation (8) becomes 

(9) 

dR n(R + r)V,S(R). (10) 
R 

I(r) = - dR zn(R + r)S’(R) = - 

Integrating by parts with respect to each of the variables, and noting the vanishing of the 
‘integrated’ terms, we get 

Z(r) = V ,  /![ dR n(R + r)S(R). 
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This has the required ‘gradient’ form, so that (6 )  becomes 

kTln n(r)+$(r )+  [[[ dR n(r + R)S(R) 

which we can integrate immediately, to  obtain 

where C is a constant. This integral equation for n(r) lies at the core of our treatment ; 
it is the generalization of a result of Berry and Reznek (1971) to the case where there is 
an external field, and where the surfaces of constant n are not parallel planes. 

3. Approximate determination of density 

The first step in the solution of (13) is the determination of the constant C. We choose a 
point r within the bulk liquid, far from the solid and the vapour. Then $(r) is zero and 
n(r + R )  equals the liquid density nL, since S(R)  is strongly localized (equation (9)), and 
(1 3) becomes 

nL = C exp( -2JJJ dR S ( R ) )  

The same argument can be applied if r lies well within the vapour, and since the value of 
C must be independent of r, we obtain the relation 

which has been analysed by Berry and Reznek (1971) and shown to give physically 
sensible results, even near the critical temperature, provided it is not used to calculate 
pressures. 

Even in the ‘flat smooth solid’ approximation (3), the nonlinearity of (13), and the 
complicated geometry of the surfaces of constant n, preclude an exact analytical deter- 
mination of the density. Therefore we regard equation (13) as a basis for iteration, any 
putative density distribution n,(r) being improved by substituting it into the integrand 
of the exponent and calculating the right-hand side of (13). To carry out this approximate 
procedure, we choose for n,(r) a ‘macroscopic’ distribution changing discontinuously 
from nL to n,  across a ‘surface of tension’ E, as shown on figure 1 for a ‘flat smooth solid’ 
(the peculiar form adopted by E near the solid will be explained in 4 4). Once E has been 
chosen, the first iteration of (1 3) gives the following ‘smoothed’ approximation for the 
fluid density : 

But how can we choose E? By requiring the iteration to be stable, in the following 
sense : E must remain a surface on which n(r) (equation (16)) is constant, ie Vn(r)  must be 
directed perpendicular to C. This mathematically sensible condition, which will ensure 
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Figure 1. 'Macroscopic' fluid density no(r), changing discontinuously across the 'surface of 
tension' Z. 

that n(v) is similar to no(r) in its gross features, will soon be shown to be physically 
sensible as well. Thus the 'surface of tension' is determined by the condition 

I,@) + jjj dR S(R)no(r + R) = constant on Z. (17) 

To evaluate the integral we use local coordinates 5 ,  q, ( for R (figure 1);  the origin 0 lies 
at r, and 0 5  is normal to C and is directed into the liquid, while 5, q are coordinates in 
the tangent plane to Z at r.  In these local coordinates, let the surface C have the equation 

i = i (5 ,  V I ,  (18) 

where, of course, i(0,O) is zero. ((x, y )  is positive if Z is convex into the vapour. Then the 
integral in (1 7) is 

x S((52 + 9 2  + (2)"2). 

The first term is independent of Z, so that (17) becomes 

$(r)-(nL--nV)Jm - m  d5 f m  - m  doS:i(")djS((5z+q2+(2)1~z) = constant. (20) 

Now we use the fact that S ( R )  (equation (9)) is zero if R exceeds the range of the 
force between fluid molecules, to justify the assumption that ( ( 4 ,  q )  is small and may 
be approximated by the leading terms of a power series. These approximations will 
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be analysed in 9 5 .  If 05 and Oq are chosen as tangents to the lines of maximum and 
minimum curvature of C at r ,  these leading terms are 

where p l ( r )  and pz(r )  are the principal radii ofcurvature at  r.  The integral in (20) therefore 
becomes 

where the third member follows from the symmetry of the integrand of the second in 
5 and q, and the fourth member has been derived using the definition (9 )  and changing 
the order of integration. 

It is natural to introduce the total curuature of C at r ,  denoted by K(r )  and defined as 

Also, we can write the last integral in (22) in terms of the Fowler (1937) approximation 
to the liquid surface tension y‘, since 

jom (24) 
TL 

yf = -(nL - nv)’ dR R4g(R)4’(R). 
8 

This formula follows from the exact theory of Kirkwood and Buff (1948), if ( 1 . 1 )  is 
assumed, and if the density falls discontinuously from nL to n, (see also Shoemaker 
et a1 1970, Berry et a1 1972). Thus, finally, the equation which,determines the ‘surface 
of tension’ C is, from (26), 

(nL - nv)$(r) + y‘K(r) = constant. (25) 

This is a remarkable result, because it can be derived independently by considering 
$(r) as an external field acting on a macroscopic fluid of density no(r). For statical 
equilibrium, the pressure p(r) must satisfy the equation 

Vp(r) = external force/unit volume on fluid = - no(r)V$(r). (26) 

If we assume that p(r) is constant (eg atmospheric pressure) far from the solid, then (26) 
predicts that the liquid pressure pL(r) and the vapour pressure pv(r) are different, the 
discontinuity across the ‘surface of tension’ C being 

P L W  - pv(r) = - ( n L  - nv)$(r). (27) 

But by Laplace’s equation this pressure di!Terence is equilibrated by the liquid surface 
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tension y, which acts by means of the curvature of X, according to the relation 

Taken together, these two relations give (25) with yf replaced by y and the constant set 
equal to zero. 

We shall discuss the solution of equation (25) in 8 4, and show how the angle of contact 
6 emerges naturally in suitable circumstances. It is, however, evident from our derivation 
that (25) is not an exact equation. In arriving at (22) we have neglected all powers of the 
curvature higher than the first, and also ignored the effects of changes in the curvature 
near r ;  we shall estimate the ‘curvature corrections’ for equation (25) in 5 5 .  Furthermore, 
the ‘surface of tension’ X which forms the basis of our initial density distribution n,(r) 
is a discontinuous approximation to a ‘transition zone’ in which nL drops continuously 
to nv , and which, moreover, has a thickness comparable with the range of the potential 
$(r) due to the solid. The validity of (25) must therefore be related to the validity of the 
Fowler (1937) approximation for surface tension, and in any application it is consistent 
to use yf rather than the true surface tension y (y‘ is usually a fair approximation to y- 
see Shoemaker et  a1 1970). 

The solution of equation (25) gives the surface X ; this is the surface on which the fluid 
density n(r) has the constant value n,, given by 

I roo \ 

n, = nL exp( -274nL-n,) J dR R3g(R)$’(R)/3kT 
0 

which follows from (16) and (9), together with the first term of the right-hand side of (19) 
(the working simplifies greatly if n, is evaluated far from the solid, so that +(r) vanishes). 
The form of the other constant-density surfaces, and in fact the complete fluid density 
n(r) near and far from the three-phase region, can be found directly from equation (16). 
We expect the function n(r) thus found to be about as accurate in comparison with the 
true fluid density as y‘ is in comparison with y. 

4. The ‘surface of tension’ and the angle of contact 

The form of the ‘surface of tension’ X is determined by equation (25), which gives the 
local curvature K(r). The ‘constant’ on the right-hand side is determined by global or 
asymptotic constraints on the fluid system. To see this, suppose we have a droplet 
resting on a horizontal solid surface at z = 0. Then the ‘external field’ $(r) will contain 
a gravity term mgz ( m  is the mass of a fluid molecule), as well as the molecular term from 
the solid. It is gravity which causes the slow, macroscopic, curvature of the droplet 
allowing its volume to remain finite. Different ‘constants’ in (25) generate solutions 
corresponding to different droplet volumes. However, we are primarily interested in 
conditions ‘near’ the solid, so we assume the total liquid volume to be infinite, and ignore 
the effect of gravity (which will in any case be small near the solid unless its surface is 
macroscopically rough) ; then we have the asymptotic condition that the total curvature 
K(r )  vanishes far from the solid, where $(r) is zero, so that the ‘constant’ in (25) is zero. 
We shall not introduce the angle of contact as an independent boundary condition 
restricting the inclination of droplet surfaces macroscopically close to the solid, but as a 
naturally-arising asymptotic value of the slope microscopically far from the solid. 
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The simplest case where an angle of contact 8 can be defined is that of the 'flat smooth 
solid', which exerts a potential $ ( z )  (equation (3)). Let the surface C be represented by its 
lateral displacement 

x = x ( z )  (30) 

at the point whose height above the surface is z ,  where O x  is a coordinate axis in the solid 
surface z = 0, as in figure 1 (we are assuming translational symmetry along Oy). Then 
the curvature K is given by 

x"(z)  
[ 1 + (x'(z))2]3'2 ' 

K(r )  = 

and (25)  becomes 

The slope angle O(z) is defined by 

cot O(z) = x'(z), (33) 

and the angle of contact 8 is the asymptotic value 

8 = lim O(z ) ,  
z + m  

which will be determined presently. 
To solve (32) we introduce the 'superpotential' 

(34) 

(35) 

which qualitatively resembles Ic/(z), and which is so named because $ ( z )  is related to 
~ ( z )  as the force is related to $(z). Then (32) may be written in the form 

) = o ,  dz 

which on integrating and using (34) becomes 

Given a value for 8, this equation may be integrated in towards the solid, the procedure 
being analogous to that involved in tracing light rays incident at an angle 8 on the earth's 
atmosphere, whose refractive index (analogous to ~ ( z ) )  varies with height. It is only for 
one value of 8 that the surface C thus found is a physically acceptable liquid-vapour 
interface, and it is obvious that this will be the angle of contact. 

To show this, consider figure 2, which shows the right-hand side of (37) for various 
possible values of cos 8 (which must of course lie between - 1 and + 1) .  All the curves 
have minima at the same point z = z o ,  which is also (equation (35)) the height where the 
solid-fluid potential $(z)  vanishes (note that this is not the same as the minimum of $(z), 
which is the height where the force on a fluid molecule is zero). A particular choice of 8 
selects a curve from the set on figure 2, and cos O(z)--and hence the slope of the 'surface 
of tension' C-may be found by following the curve inwards towards z = 0. If the curve 
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Figure 2. Sketch of cos O(z) (equation (37)) for various ‘asymptotic angles’ 0, drawn for a 
‘non-wetting’ case where (nL-nv)X(zo)/yf > - 1 .  

crosses the abscissa, then 0 = n/2 and I: at that point is perpendicular to the solid 
surface. If the curve crosses either of the lines & 1, I: at that point is parallel to the solid 
surface. At the minima zo of the curves on figure 2, C has a point of inflection, where the 
curvature K ( z )  (equation (32)) vanishes. 

The surfaces C generated from figure 2 by four contact angles 8, to 8, are sketched 
on figure 3. It is clear that the surfaces corresponding to e,, 8, and 8, cannot represent 
a body of liquid in stable contact with a solid, while that corresponding to 8, is impossible. 
The only case leading to a sensible surface I: is generated by Oe in figure 2, where the 
curve cos O(z) touches the line - 1 at z o .  From equation (37), this requires that the angle 
of contact is given by 

x ( zo )  = -1. cos e+- nL-nv 
Yf 

The resulting ‘surface of tension’ is sketched in figure 4(a). That C does indeed have the 
form shown is evident not only from the requirement that it must interpolate between the 
curves on figure 3 corresponding to 8, and 8 d ,  but also from the analysis of equation (37) 
given in the appendix (this analysis also shows that, when (38) is not satisfied, x remains 
finite for all finite z ,  so that the curves of figure 3 are correctly drawn). 

77mT”// / / /w/w 
Figure 3. ‘Surfaces of tension’ generated by O , ,  0,. 0,. Od on figure 2. 
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KC*) 
- ~ ~ ~ ~ ~ ~ - ~ ~  -,,, . ,~,, - - - - - - - - - , , ~ 

Figure 4. Stable ‘surfaces of tension’ for: (a) (nL-nv)X(zo)lyf > - 1 (non-wetting); (b) 
- 1 > (nL - nv),y(zo)/yf > -2  (wetting). 

Figures 2, 3 and 4(a) are all drawn for a ‘non-wetting case’, where 

( n L  - nv)X(zo)/Y‘ > - 1 I 

and 8 is obtuse. If (nL- nV)~(zo)/y‘ lies between - 1 and - 2, the analysis leads to an 
acute angle 8 ;  this is the ‘wetting’ case. Finally, if (nL-nv)X(z0)/?jf < -2, all curves of 
cos O(z) cross the line - 1, and no value of 8 leads to stable contact; this is the case of 
‘spreading’. 

The expression (38) for the angle of contact on a ‘flat smooth solid’ may be rewritten 
in a particularly simple way, with the aid of equations (35), (3), (24) and the fact that 
x’(z0) vanishes ; after some reduction, we obtain 

which involves the fluid-solid intermolecular force U’(R), the fluid-fluid force 4‘( R), 
and the bulk liquid radial distribution function g(R).  Alternatively we may use the 
exact Young-DuprC equation (Adam 1941), namely 

o w  
CO?- = - 

2 2y’ 

where W is the ‘reversible work of adhesion’, defined as the energy required to remove 
liquid from unit area of solid and replace it by vapour. We obtain for Wthe approximate 
formulae 

dR R(R*-z;)U(R). (41) W =  

The first expression closely resembles the Fowler approximation (24) for the liquid 
surface tension, with the function (R2  - 2’)’ acting instead of R4g(R) to ‘cut off’ the 
fluid density in response to the repulsion very near the solid. The second expression is 
a more direct representation for the work of adhesion, but the dependence on zo would 
have been difficult to foresee. 

This discussion of the contact angle has been restricted to the case of a ‘flat smooth 
solid’, where the surfaces on which $(r) is constant are parallel planes. What happens 
if the solid is rough? There are two limiting cases. In the first, the roughness is macro- 
scopic; that is, the solid is smooth at the molecular level, and rough on a larger scale 
which is, however small in comparison with the droplets considered. Then the ‘flat 

JZ, dR(R2-z;)’U’(R) = -nns(n,-nv) I, nns(n,--v) 
4 
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smooth solid’ approximation may be employed locally, and the contact angle 8 is the 
same quantity that we have been discussing, except that it is now the angle made by the 
liquid-vapour interface with the local tangent plane on the solid, rather than with the 
horizontal. Near the perimeter of the droplet the liquid surface must be puckered and 
dimpled in a complicated way, in order to satisfy the local contact conditions. The 
analysis of equation (25) in these situations is very difficult ; the main problem is to see 
whether an ‘average contact angle’ can be defined. This would be observed with instru- 
ments whose resolution is coarse in comparison with the roughness, but fine in com- 
parison with the drop size. Some progress has been made, when the roughness is 
statistical in character (Wenzel 1949), and when the roughness is idealized to a simple 
sinusoidal form (Johnson and Dettre 1964); a large literature exists, which is reviewed 
by Blake and Haynes (1973). 

In the second limiting case, the roughness is microscopic; that is, the solid surface is 
macroscopically flat, but no averaging of +(r) across the surface is taken. Thus the 
surfaces of constant +(r) undulate on an atomic scale (for a perfect crystal, the undulations 
will have the periodicity of the lattice). The arguments leading to formula (39) for the 
contact angle cannot now be applied, and a new analysis based on equation (25), is 
required. A preliminary study which takes account of the curvature of the t+b surfaces 
suggests that now there may be more than one stable ‘surface of tension’ C. If further 
analysis confirms this, then presumably equation (39) represents an average over the 
contact angles for the different possible surfaces C, whose existence may provide yet 
another explanation of contact-angle hysteresis (for the others, see Blake and Haynes 
1973). 

Of course many solid surfaces are both macroscopically and microscopically rough, 
and may also contain asperities on an intermediate scale. All such cases are covered by 
equation (25) if a gravity term is included in $(r). A comprehensive mathematical study 
of this equation is therefore required, which would enable the form of ‘surfaces of 
tension’ (ie the shapes of droplets) to be understood even where it is difficult to define a 
contact angle. 

5. Curvature corrections 

In deriving the fundamental equation (25), which determines the ‘surface of tension’ C, 
we assumed that the curvatures of C were small and slowly varying. To examine these 
assumptions, we restrict ourselves to surfaces with translational symmetry, so that in the 
local coordinates of figure 1 we may write the equation of the surface near r as e(<). 
Then instead of (22a) we have, for the integral in (20) 
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where the first correction term in ((0 is now included ; this will show the effect of large 
curvatures of Z. 

To describe the effect of varying curvature, we take for ((t) not (21) but 

In terms of the curvature K(0) of Z at 5 = 0 (ie at U) and its rates of change K’(0) and 
K”(0) as Z is traversed, we have 

a = i K ( 0 ) ;  b = $(O) ; c = hK”(0) .  (44) 

If we include the first four contributing powers of ( ( 5 )  in (42) we obtain, after some 
reduction, 

J = n a b  dR R3S(R) (45) 

For the basic curvature equation (25) to be a good approximation, we require the 
terms in R z  and R4 in the square brackets in (45) to be small in comparison with the 
constant term. Let R,,, be the largest value of R contributing significantly to the integral 
in (45); from (9), R,,, is the range of the forces between fluid molecules. Then the 
validity conditions of (25) become 

Condition (c) may be ignored : it is essentially the product of (a) and (b). 

equations (32) and (33), and obtain 
To estimate the curvature and its derivatives, we employ the analysis of 9 4, especially 

cos 0 sinZ@ 
- 

The first term in the expression for K“ may be ignored, since its use in (46b) simply 
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reproduces (46d). The conditions (46) may now be written approximately as 

16 
I 

(b) I ’ .  (48) 

These conditions will apply most stringently when the angle of contact is zero, since then 
the forces from the solid are strongest and Z is most strongly curved. Using (38) to 
eliminate (nL - nv)/rf, and ( 3 7 )  to eliminate O(Z), we obtain conditions involving only the 
‘superpotential’ ~ ( z ) ,  defined by ( 3 5 )  : 

I 
(b )  I (49) 

The form of ~ ( z )  is shown on figure 2 : the minimum lies at z o ,  and the ‘surface of tension’ 
C exists for z-values exceeding zo. 

To obtain definite estimates we approximate ~ ( z )  by the following expression, which 
is qualitatively valid when z 2 zo : 

X(Z) ‘V x ( z O )  exp[-2(~-zO)’IRHaxI (2 2 zo) (50) 

(we have chosen this form to make x(R,,,) small, bearing in mind the fact that zo- 
roughly the ‘hard-sphere radius’-is much less than RmaX). This enables the functions 
on the left-hand side of (49) to be evaluated in dimensionless form, and their maxima 
determined. The approximate values are : condition (49a) : 0.8 ; condition (49b) : 0.4 ; 
condition (494:  0 .7 .  Thus all three conditions are only barely satisfied, to about the 
same degree. 

These results by no means imply that the results of 9 4 are inapplicable, for we have 
taken the extreme case where the angle of contact is zero and the left-hand sides of (49) 
take their greatest values. For the case when 8 is 90°, these ‘greatest values’ are approxi- 
mately halved, and this means that our analysis based on ( 2 5 )  applies over almost all of 
the surface Z. Even in ‘wetting cases’, when 8 is small, the correction terms in (45) never 
diverge, so that the arguments of $4,  and in particular the formulae (39) and (41) for 8 
and W, should still be quite accurate (the portion of the ‘surface of tension’ over which 
(49) is poorly satisfied is always limited). 

6. Conclusions 

The methods of this paper led to the explicit approximation (16) for the density n(r) 
in a liquid and vapour in contact with an arbitrary rigid solid. The calculation involves 
first finding the ‘surface of tension’ C, given by the solution of the semi-macroscopic 
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‘curvature’ equation (25) .  For a ‘flat smooth solid’, C can be calculated in detail, and 
from its slope far from the solid can be obtained the simple formulae (39) and (41) for the 
contact angle 0 and work of adhesion W. The ‘ingredients’ of the method, which must 
be fed in a priori, are the bulk liquid radial distribution function g(R), and the two 
potential functions : +(R)  between two fluid molecules, and U(R) between a fluid and a 
solid molecule. These three quantities can be obtained in principle and often in practice 
by molecular-beam and neutron scattering experiments. 

In future work we intend to apply the methods reported in at least three ways. First, 
we wish to test the formulae for 8 and W for a range of fluid-solid systems. Second, we 
w.ish to examine the ‘surface of tension’ above a ‘flat smooth solid’ when the chief 
curvature correction term in 0 5 is included. Third, we wish to study the behaviour of 
the ‘curvature equation’ for C above a solid that is neither flat nor smooth. 
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Appendix 

Consider equation (37) for the surface of tension C above a ‘flat smooth solid’; using (33), 
we get 

Let the asymptotic angle 8 made by C with the surface be less than the equilibrium 
contact angle defined by equation (38), which we shall now call 8,. Then C has an 
inflexion point at zo (see curves c on figures 2 and 3), and (A.l) gives, for the horizontal 
distance X(z) in which C climbs from zo to z ,  

We shall show that as 8 + e,, X(z) diverges for any finite z - zo, so that C does indeed 
take the limiting form shown on figure 4. 

Expansion of ~ ( z )  near its minimum using (38) gives 

so that (A.2) becomes 

X(z) = J;-”dz ( 1 
[- 1 +(e,- e) sin e, + A Z ~ I ~ -  

e-ec = /i-20dz {2[Az2+(6,-@sin Oc]}-1’2 
2-20 
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- -- 1 sinh-l [ (L) ‘”1 ( 2  A )  ’ /’ (e, - sin 8, 

So long as Z- - to  is finite, then, as 8 -, 8, we have 

which is infinite when 8 = 8,. QED. 
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